БОЛЬШАЯ НАУЧНАЯ БИБЛИОТЕКА  
рефераты
Добро пожаловать на сайт Большой Научной Библиотеки! рефераты
рефераты
Меню
Главная
Налоги
Начертательная геометрия
Оккультизм и уфология
Педагогика
Полиграфия
Политология
Право
Предпринимательство
Программирование и комп-ры
Радиоэлектроника
Региональная экономика
Режущий инструмент
Реклама и PR
Ресторанно-гостиничный бизнес бытовое обслуживан
Римское право
Русский язык культура речи
РЦБ ценные бумаги
САПР
Сексология
Семейное право
Социология
Страховое право
Строительство архитектура
Таможенное право
Теория государства и права
Технология
Таможенная система
Транспорт
Физика и энергетика
Философия
Финансы деньги и налоги
Физкультура и спорт
Фотография
Химия
Хозяйственное право
Цифровые устройства
Экологическое право
Экология
Экономика
Экономико-математическое моделирование
Экономическая география
Экономическая теория
Эргономика
Этика и эстетика
Сочинения по литературе и русскому языку
Рефераты по теории государства и права
Рефераты по теории организации
Рефераты по теплотехнике
Рефераты по товароведению
Рефераты по трудовому праву
Рефераты по туризму
Рефераты по уголовному праву и процессу
Рефераты по управлению
Рефераты по менеджменту
Рефераты по металлургии
Рефераты по муниципальному праву
Биографии
Рефераты по психологии
Рефераты по риторике
Рефераты по статистике
Рефераты по страхованию
Рефераты по схемотехнике
Рефераты по науке и технике
Рефераты по кулинарии
Рефераты по культурологии
Рефераты по зарубежной литературе
Рефераты по логике
Рефераты по логистике
Рефераты по маркетингу
Рефераты по международному публичному праву
Рефераты по международному частному праву
Рефераты по международным отношениям
Рефераты по культуре и искусству
Рефераты по кредитованию
Рефераты по естествознанию
Рефераты по истории техники
Рефераты по журналистике
Рефераты по зоологии
Рефераты по инвестициям
Рефераты по информатике
Исторические личности
Рефераты по кибернетике
Рефераты по коммуникации и связи
Рефераты по косметологии
Рефераты по криминалистике
Рефераты по криминологии
Новые или неперечисленные
Без категории

Методы и средства отображения информации

Методы и средства отображения информации

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

ГОУ ВПО Магнитогорский государственный технический университет

им.  Г. И. Носова






Реферат




 

На тему:


«Методы и средства отображения информации»










                                                                                   







           


Магнитогорск 2008

 

1.      МЕТОДЫ ОТОБРАЖЕНИЯ ИНФОРМАЦИИ

1.1    ЭЛЕКТРОННО-ЛУЧЕВЫЕ ИНДИКАТОРЫ

Электронно-лучевые индикаторы, или, как их чаще называют, электронно-лучевые трубки (ЭЛТ), являются наиболее распростра­ненным и важным устройством в технике отображения информации. Работа ЭЛТ основана на создании управляемого сфокусиро­ван­ного пучка электронов, воздействующего на покрытый люмино­форным веществом экран и вызывающего свечение отдельных его участков.

Монохромные ЭЛТ. На рис. 1 приведено схематическое изо­бражение монохромной электронно-лучевой трубки с электростатической фокусировкой и электромагнитным от­клонением луча. Сама трубка представляет собой узкий стеклянный цилиндр. Внутри ци­линдра встроен набор электродов, составляющих электронно-оптическую систему, на по­верхности цилиндра расположена пара отклоняющих катушек ОК. Вакуумное пространство внутри трубки, по которому распространяется пучок электронов, может быть разделе­но на три участка. Первый участок включает в себя катод К, покрытый оксидной пленкой и излу­чающий электроны при повыше­нии его температуры с помощью отдельного нагревателя. Электроны эмиттируют с катода, когда их энергия превышает работу выхода с верхних энергетических уровней атома: эта энергия зависит как от материала катода, так и от его температуры. Освобождаясь, элек­троны имеют некоторую начальную скорость (см/с), опре­деляемую по известной формуле кинетической теории газов:

,

где  — постоянная Больцмана; Т — абсолютная температура, К; т — масса элек­трона.

Расположенный вблизи катода управ­ляющий электрод-модуля­тор М имеет потен­циал отрицательный относительно катода, по­этому через него пролетают лишь электроны, попадающие в отверстие. Этим создает­ся как бы точечный источник электронов. Управляя потенциалом на модуляторе, можно регули­ровать  интенсивность пучка.

Электроны, попадающие в конце своего пути на внутреннюю поверхность экрана Э с люминофорным покрытием, должны обла­дать достаточной энергией для возбуждения люминофора. Кроме того, светящееся пятно должно быть возможно меньшего размера, чтобы обеспечить хорошую разрешающую способность изображе­ния. Это требует соот­ветствующей фокусировки луча и его ускоре­ния, что обеспечивается несколькими элек­тродами, имеющими опре­деленные потенциалы относительно катода. В основе действия этих электродов заложены принципы электронной оптики.

Электронный луч, проходящий в среде с некоторым потенциа­лом  под углом , попадая на границу среды с потенциалом , меняет свое направление, распространяясь далее под углом . Таким образом происходит преломление электронного луча, которое подчиняется уравнению, аналогичному уравнению световой оптики:

,

где  — электронный аналог показателя преломления среды.

С помощью определенной конфигурации электродов и подбора их потенциалов можно осуществлять различные электронно-оптиче­ские эффекты: фокусировку луча, рас­сеяние, отражение и т. д. Всю систему электродов на первом участке ЭЛТ, обеспечиваю­щую формирование и усиление луча, иногда называют электронной пушкой.

На втором участке кинескопа расположена отклоняю­щая система. Действие откло­няющей системы заключается в на­правленном изменении прямолинейного пути электро­нов. Для отклонения пучка электронов может использоваться как электроста­тическое поле, так и магнитное. Для создания электростатического поля внутри трубки устанавливаются две пары элек­тродов, отклоня­ющих луч во взаимно перпендикулярных направлениях. Напряже­ния на отклоняющих электродах должны быть очень высокими, причем тем выше, чем больше скорость движения электронов, т. е. яркость пятна.

При методе электромагнитного отклонения на небольшом учас­тке электронного пучка прикладывается магнитное поле, возбужда­емое двумя парами катушек, устанавли­ваемых снаружи трубки. Одна пара катушек ОК сверху и снизу трубки отклоняет луч в го­ризонтальном направлении, другая пара по бокам трубки (на рис. 1 не показана) отклоняет луч в вертикальном направлении. Электрон, попадающий в магнитное поле, начинает двигаться по дуге и покидает участок отклонения под некоторым углом к направ­лению первоначального движения. Отметим, однако, что электромагнитные отклоняющие сис­темы обеспечивают ограниченную скорость изменения направления луча. В основном это связано с реактивными параметрами катушек.

Экран ЭЛТ покрыт слоем люминофора. На нем создается изо­бражение с требуемой яркостью, временем послесвечения и цветом. Причиной свечения является передача энер­гии от ускоренных элек­тронов луча электронам, связанным с кристаллом люминофора, в результате чего последние переходят в возбужденное состояние. При их возвращении в нормальное состояние избыточная энергия выделяется в виде света. Этот физический эф­фект называют катод­ной люминесценцией. Люминофоры обычно состоят из смеси солей кальция, кадмия, цинка и некоторых других элементов. Наиболее широкое применение нашли сульфидные люминофоры. Наиболее широкое распространение в монохром­ных трубках получили белый и зеленый цвета. Время послесвечения экрана, т. е. время, необ­ходимое для спа­дания яркости свечения от номинальной до первоначальной после пре­кращения действия электронного луча, также зависит от состава входящих в люминофор компонентов и может находиться в диапа­зоне от нескольких микросекунд до десятков се­кунд.

Другим важным физическим явлением, которое должно учиты­ваться при использо­вании ЭЛТ, является вторичная электронная эмиссия. Она заключается в испускании вторичных электронов из материала люминофора при воздействии на него пучка первич­ных электронов. По мере увеличения интенсивности пучка количество эмиттированных вторичных электронов возрастает, и при определенном уровне энергии свечение люмино­фора не увеличивается. Таким образом, существует порог максимальной яркости свето­вого пятна на экране, выше которого она не меняется с увеличением потенциала уско­ряющего электрода. Для отвода вторичных электронов на внутреннюю поверхность ко­нуса трубки наносят слой графита, находящийся под положительным потенциалом.

Цветные ЭЛТ. В ЭЛТ с теневой маской применяется метод диафрагмирования электронного луча. Маска помещена между тремя электронными пушками и трехцветным люминофором экрана. Она препятствует попаданию каждого луча на участки люмино­фора не соответствующего ему цвета.

На рис. 3 схематически показано расположение маски и экрана в цветной ЭЛТ с так называемым компланарным располо­жением пушек. Каждая из них оуществляет генерацию, фокусировку и ускорение луча. Внутри трубки пуш­ки сориентированы таким образом, что их лучи, рас­пространяясь в одной плоскости под некоторым углом друг к другу и проходя через лю­бое из отверстий в маске, попадают каждый на полоску люминофора только определен­ного цвета. Цветные пятна, возбуж­даемые лучом, благодаря близкому расположению, воспринимаются глазом как одно пятно некоторого производного цвета. Этот цвет зави­сит от пропорций основных цветов и может быть любым в об­ласти видимого спектра. Пропорции можно менять, управляя на­пряжением модулятора.

Рис. 3. Расположение электродов маски и экрана в цветной ЭЛТ с компланарным расположением пушек (К, 3, С - красный, зеленый, синий)

Цветные ЭЛТ значительно сложнее в изготовлении, чем мо­нохромные. Они требуют очень точной установки элементов в про­цессе производства. Разре­шающая способность цветных ЭЛТ ограничена количеством отвер­стий в маске.

Сложность конструкции трехпушечных ЭЛТ привела к поискам других методов реа­лизации цветных изображений на экране. Наибольшую известность здесь получили два типа трубок, так называе­мые тринитрон и элмитрон. В ЭЛТ типа «тринитрон» все элек­тронные лучи генерируются с помощью одной пушки. Она имеет три независимых катода и модулятора. В тринитроне также используется щелевая маска, однако удается получить изображение большей яркости. В обоих из описанных типах трубок предельная разре­шающая способность определяется количеством и размерами отверстий в маске. Поэтому интерес представляют цветные трубки типа «элмитрон», в которых маски не использу­ются, а цвет свечения люминофора зависит от глубины проникновения электронного луча и, следовательно, от энергии последнего.

Недостатком является то, что в схеме управления индикатором должен быть преду­смотрен быстродействующий высоковольтный переключатель. С целью избежать этого иногда используются двухпушечные ЭЛТ. Трубки типа «элмитрон» используются в тех­нике отображения, когда необходимо получить высокую разрешающую способность при ограниченном цветном диапазоне.

Запоминающие ЭЛТ, или ЭЛТ «прямого видения», используются для преобразова­ния однократно подаваемых на отклоняющую систему сигналов в видимое изображение, сохраняемое на экране в течение длительного времени. В таких трубках управляемый электронный пучок не воздействует непосредственно на люминофор экрана, имеющий небольшое время послесвечения, а создает «потенциальный рельеф» изображения на спе­циальной плоской мишени, расположенной внутри трубки.

Конструкция запоминающей ЭЛТ схематично представлена на рис. 4. Запоминаю­щая поверхность состоит из тонкой металлической сетки, на которую со стороны экрана осажден слой диэлектрика. Внутри колбы размещены две электронные пушки: записы­вающая, которая формирует модулируемый и адресуемый отклоняющей системой высо­коэнергетический пучок, и воспроизводящая, в которой создается интенсивный расходя­щийся пучок электронов с невысокой энергией. Специальные кольцевые электроды, рас­положенные на стенках трубки и находящиеся под определенным потенциалом, создают электростатическое поле, благодаря которому медленные электроны двигаются перпенди­кулярно мишени, равномерно распределяясь по ее поверхности.

Рис. 4. Схематическое изображение конструкции запоминающей трубки:

ЗП – записывающая пушка; ВП – воспроизводящая пушка; ОК – отклоняющие ка­тушки; К – коллекторная сетка; С – сетка мишени; Д – диэлектрик; КЭ – кольцевые элек­троды; АЭ – алюминированный экран.

Основным преимуществом запоминающей ЭЛТ является простота индикаторов, соз­даваемых на их базе отсутствие мерцания и высокая яркость. Разрешающая способность экрана в них также достаточно высока и определяется размером и количеством отверстий в сетке мишени. Однако важным недостатком индикаторов на запоминающих трубках, ограничивающим их использование во многих областях, является невозможность избира­тельного стирания информации. Применяются они в основном в качестве устройства вы­вода графических данных из машины и в радиолокационных системах.

Электролюминесцентное излучение возникает в результате при­ложения электриче­ского поля к люминофорному материалу. Интен­сивность излучения зависит от напряжен­ности ноля, а также часто ты его изменения, если поле переменное. Свечение связано с ускоре­нием движения носителей зарядов в люминофоре, для чего требуется достаточно высокая напряженность поля (порядка 103- 106 В/см). Наиболее распространенным люми­нофором является сульфид цинка (ZnS) с примесями меди, марганца и некоторых других элементов. От типа люминофора и количества примесей зависим цвет излучения, пере­крывающий практически всю видимую область спектра.

Распространение в области отображения информации получили два основных типа электролюминесцентных индикаторов (ЭЛИ): построенных на основе порошковых люми­нофоров, возбуждаемых постоянным напряжением, и с использованием люминофоров в виде тонкой пленки, возбуждаемых высокочастотным переменным напряжением.

Основой электролюминесцентного элемента постоянного тока является порошкооб­разный люминофор, кристаллы которого вместе с примесями распределены в связующем веществе. Этот состав наносят на прозрачную пластину с проводящим покрытием (обычно используется слой оксида олова). С другой стороны к люминофору приклады­вают тонкую металлическую пластину (фольгу). Вся конструкция размещена в пластмас­совом корпусе и герметизирована (рис. 5.).

Рис. 5. Конструкция электролюминесцентного элемента постоянного тока:

1 – люминофорный слой; 2 – металлический электрод; 3 – выводные контакты; 4 – герметический корпус; 5 – прозрачный электрод (); 6 – стеклянная подложка

Важным преимуществом электролюминесцентных элементов является их малая толщина, позволяющая конструировать компактные индикаторы. Управляются они на­пряжениями порядка 50 — 100 В, однако по яркости и контрастности уступают многим другим типам излучающих элементов.

В среднем для ЭЛИ постоянного тока при питающем напряже­нии около 100 В яр­кость свечения составляет примерно 300 кд/м2. Характерным для этих элементов является уменьшение их световой Мощности в процессе эксплуатации, что связано с миграцией примесей в люминофоре в зонах контакта с электродом. Срок службы элементов может быть увеличен, если осуществить их питание импульсным напряжением. Отметим также важную для некоторых применений способность ЭЛИ менять цвет излучения в зависимости от приложенного напряжения.

Тонкопленочные индикаторы переменного тока являются наибо­лее перспективными приборами, реализующими принцип электролюминесценции. Слой люминофора разме­щают между слоями диэлектрика, обеспечивающими гальваниче­ское разделение его с электродами (рис. 6.). Все слои создаются с помощью технологии напыления в вакууме на стеклянную подложку. Долговечность таких ЭЛИ значительно выше, чем порошковых, питающее их высокочастотное напряжение составляет 150 — 250 В.

Рис. 6. Структура слоев тонкопленочного электролюминесцентного индикатора пе­ременного тока:

1 – прозрачный электрод; 2 – пленка люминофора; 3 – металлический электрод; 4 – светопоглощающий диэлектрик; 5 – прозрачный диэлектрик; 6 – стеклянная подложка


1.3. Светодиодные индикаторы

Светоизлучающие диоды (СИД) представляют собой твердотельные приборы, рабо­тающие на р-п-переходах, образованных в полупроводниковом материале. В их основе лежит принцип инжекционной люминесценции. Эксплуатационные достоинства СИД способствовали их широкому использованию в вычислительной и другой аппаратуре в качестве дискретных индикаторов.

Рассмотрим коротко физические основы работы светоизлучающих диодов. Из­вестно, что в полупроводниках внешние оболочки атомов, создающих кристаллическую структуру, в результате значительного сближения образуют определенные энергетические зоны. В так называемой валентной зоне располагаются электроны, обеспе­чивающие связь атомов в кристалле. Отдельные электроны под воздействием тепловой энергии могут пе­реходить в другую зону, называемую зоной проводимости. При этом переходе образуется свободное энергетическое состояние, получившее название дырка. Электроны и дырки рассматриваются как частицы, имеющие со­ответственно отрицательный и положитель­ный заряды. Введение в материал полупроводника определенных примесей создает избы­ток электронов или дырок, образуя область проводимости п- или p-типа. Когда области обоих типов выполнены в одном кристалле, они образуют р-п-переход. Через него могут диффундировать заря­ды, образуя так называемые неосновные носители, т. е. носители за­рядов, имеющих знак, противоположный основным (электроны в р-области и дырки в п-области). Диффузия продолжается до тех пор, пока не установится потенциальный барьер, препятствующий движению носителей заряда.

Обычно возвращаемая энергия выделяется в виде теплоты, однако при определен­ных условиях (сохранение энергии и импульса при рекомбинации) происходит излучение фотона. В зависимости от мате­риала полупроводника и концентрации примесей излуче­ние имеет определенную длину волны, что позволяет создавать СИД с различным цветом свечения. Так как переход электронов осуществляется не с дискретных уровней, а с зон разрешенных состояний, имеющих определенную ширину, то излучение не является мо­нохроматическим.

Рис. 9. Конструкция светоизлучающего диода:

1 – полупроводниковый слой p-типа; 2 – прозрачная подложка; 3 – полупроводнико­вый слой п-типа; 4 – керамический корпус; 5 – электрод

Изготавливаются СИД в виде дискретных элементов отображения (рис. 9), в виде монолитных полосково-сегментных приборов, а также в виде небольших матриц с - адресацией. В настоящее время промышленностью выпускаются в основном при­боры, излучающие в красном, зеленом и желтом диапазонах при яркостях примерно в 100 кд/м2. Монолитные кристаллы СИД имеют пло­щадь не более 1 – 2 см2, однако уже длительное время ведутся работы по созданию на их базе плоских цветных телевизион­ных экранов.

                       1.4. Газоразрядные индикаторы

В принципе любой газоразрядный прибор представляет собой заполненную инерт­ным газом изолированную от внешней среды ячейку, внутри которой на близком расстоя­нии друг от друга распо­ложены два электрода. Широкое распространение в технике полу­чили газоразряд­ные приборы типа неоновых ламп, тиратронов тлеющего разряда, линей­ных газоразрядных индикаторов и пр. Их область применения ограничена в основном сигнализацией состояния различных ус­тройств и объектов.

В простых устройствах отображения цифровой и знаковой ин­формации нашли при­менение индикаторные лампы тлеющего разря­да. Их особенностью является наличие не­скольких фигурных като­дов в одном баллоне.

Значительно расширилась область применения газоразрядных индикаторов с появ­лением матричных цифровых панелей (плазмен­ных панелей). Они представляют собой плоский экран, на котором любое изображение создается большим числом светоизлучаю­щих газоразрядных элементов, образованных на пересечениях горизон­тальных и верти­кальных электродов.

Существуют два основных типа плазменных панелей: постоянно­го тока с внешней адресацией и переменного тока с запоминанием информации. Панели постоянного тока имеют плоскую трехслойную конструк­цию, в которой между двумя стеклянными пласти­нами с нанесенной на их внутреннюю поверхность системой взаимно перпендикулярных полупрозрачных электродов расположена перфорированная изоли­рующая матрица. От­верстия в матрице заполнены газом и разме­щаются в местах пересечения электродов. Свечение возникает при подаче на соответствующую пару электродов напряжений. Для получения устой­чивого изображения необходимо последовательно подавать высоко­вольтное напряжение на требуемые точки.

Более широкое распространение получили газоразрядные панели постоянного тока с самосканированием, которые хотя и значительно сложнее по конструкции, но свободны от некоторых недостатков, в частности, в них имеется возможность параллельного ввода ин­формации во все строки, что значительно упрощает управляющие цепи.

Газоразрядная ячейка переменного тока отличается от ячейки постоянного тока тем, что ее электроды гальванически изолированы от газовой смеси диэлектрическими про­кладками и по существу ячейка представляет собой конденсатор.

Рис. 11. Общий вид (а) и поперечное сечение (б) фрагмента конструкции плазменной панели переменного тока

Конструкция панели переменного тока показана на рис. 11. На двух стеклянных подложках 3 расположен набор параллельных проводников, вертикальных 2 и горизон­тальных 4, покрытых слоем прозрачного диэлектрика 1. Между обкладками с помощью герметизирующей рамки 5 образуется камера, заполненная газовой смесью 6. Наборы проводников взаимно перпенди­кулярны и в точках их пересечения образуются газораз­рядные элементы. При зажигании элемента создается светящаяся точка. Наборы точек обеспечивают отображение необходимой информа­ции. Яркость светящихся точек доста­точно высока и не зависит от размерности матрицы.

.Ряд важных преимуществ плазменных панелей – плоскостность экрана, высокая разрешающая способность (уже созданы панели с матрицей 10241024 точки), возмож­ность работы в непрерывном режиме без мерцания и искажения изображения, хорошая видимость при ярком освеще­нии – делает их одними из наиболее перспективных индика­торов для использования в системах отображения высокой информативности.

1.5. Жидкокристаллические индикаторы

Жидкие кристаллы – это сложные органические соединения, характеризующиеся со­четанием свойств жидкости (например, теку­честью) и кристалла (оптической анизотро­пией). Среди множества веществ такого типа для индикаторов выбирают те, которые со­хра­няют свои свойства в достаточно широком диапазоне температур (обычно 0—70° С). Наличие анизотропии и возможность управля­емой перестройки структуры жидкого кри­сталла дают возможность использовать два типа оптических эффектов: изменение коэф­фици­ента отражения света (при его пропускании) и изменение характе­ра поляризации лу­чей при отражении света. Таким образом, в отли­чие от описанных индикаторов жидкок­ристаллические ячейки требу­ют обязательной внешней подсветки, выполняя роль модуля­торов при пропускании или отражении света.

Широкое распространение для целей индикации получило ис­пользование в жидких кристаллах так называемого «твист-эффек­та». В ячейке, получаемой в результате запол­нения жидкокри­сталлическим веществом полости между двумя стеклянными пластин­ками, на внутренней поверхности которых нанесены прозрачные электроды (рис. 13.), ориентация молекул постепенно меняется от верхнего слоя к нижнему. Это достигается с помощью определенной технологии изготовления ячейки. При наложении электрического поля молекулы раскручиваются и ориентируются в направлении вектора напряженности электрического поля. Фаза света при прохождении через ячейку в этом слу­чае не меня­ется. Помещая на входе и выходе ячейки пленочные поляризаторы, обеспечивают блоки­ровку света определенной фазы и пропускание его при повороте плоскости поляризации на 90°. Тем самым задаются включенное и выключенное состояния приборов. Малая по­требляемая мощность, плоскостность конструкции и невысокая стоимость делают жидкок­ристаллические индикаторы (ЖКИ) одним из самых удобных средств ото­бражения знаковой информации в малогабаритных электронных устройствах (часы, калькуляторы, измерительные приборы и пр.). Однако широкое применение этих индикаторов ограни­чено рядом принципиальных недостатков. Отметим среди них относительно не­высокий коэффициент контраста (не более 20 в лучших образцах). Этот коэффициент значительно падает при отклонении утла наблю­дения от нормали (обычно допустимый угол обзора не превышает 45°). Жидкокристаллические приборы очень инерционны, время их переклю­чения составляет десятки и даже сотни миллисекунд и зави­сит от температуры.

Рис. 13. Конструкция жидкокристаллического индикатора:

1 – прозрачные электроды; 2 – жидкокристаллическое вещество; 3 – стеклянные пла­стины; 4 – герметизирующая рамка


Серийно выпускаемые ЖКИ вы­полнены в виде единичных знаковых модулей либо в виде неболь­ших табло из наборов этих модулей.

1.6. Принципы отображения информации на больших экранах

Для отображения информации, используемой одновременно группой людей, приме­няются экраны больших форматов с рабочей поверхностью от одного до десятков квад­ратных метров. Преобра­зование информации, выводимой на большой экран, основывается на самых различных принципах. Множество известных устройств работает с промежуточ­ным носителем информации: фотоплен­кой, фотополупроводниковой пластиной и т. д. Полученное на таком носителе изображение проециру­ется с помощью оптической системы на экран. При хорошем качест­ве отображения все эти устройства в принципе не могут работать в реальном масштабе времени с системой, включающей ЭВМ, ввиду чего область их применения ограничена.

Проекционные ЭЛТ, известные достаточно давно, в последние годы значительно усовершенствованы. Основные требования к таким трубкам - повышенная яркость при малых габаритных разме­рах. Это достигается применением люминофоров с высокой свето­отдачей и увеличением анодного напряжения (до 40—80 кВ). При относительно не­больших размерах трубки с ее поверхности удается получить световой поток порядка 1000 лм. На базе такой ЭЛТ строятся системы с экраном размером до 33 м. Ввиду большой мощности электронного пучка здесь возникает необходи­мость использовать принуди­тельное охлаждение трубки и специаль­ную защиту от рентгеновского излучения. Другим недостатком является чувствительность к уровню внешней засветки экрана, что ограничи­вает область применения таких устройств.

Светоклапанные проекционные системы обеспечивают значи­тельно лучшее каче­ство изображения в условиях внешней засветки и большие размеры экрана, хотя они и сложнее по конструкции, чем системы с проекционными ЭЛТ. Под общим термином «светокла­панные» объединены все устройства, которые модулируют свет внешнего ис­точника, меняя параметры пропускающей его среды. Наиболее распространены устрой­ства, в которых изменяющейся средой явля­ется тонкая масляная пленка с определенными оптическими и элек­трическими характеристиками. Принцип работы светоклапанного уст­ройства отображения упро­щенно показан на рис. 14. Свет от мощного источника с линзо­вой оптикой 1 обеспечивающей рав­номерность потока, попадает на щелевое зеркало 2 и отражается им на сферическое зеркало 6, по­крытое масляной пленкой 7. Зер­кала сориен­тированы таким обра­зом, что при гладкой пленке свет, отражаясь, возвращается в на­прав­лении к источнику, а эк­ран 4 остается незасвеченным. Деформация пленки в какой-либо точке вызывает отклонение отра­жающегося от нее луча, который, проходя через щель зеркала 2, попадает с помощью проекцион­ной оптики 3 в определенную точ­ку экрана. Яр­кость свечения пят­на на экране определяется сте­пенью деформации пленки, которая, в свою очередь, зависит от величины заряда, устанавливаемого на ее поверхности элек­тронным пучком. При снятии заряда пленка достаточно быстро приходит к исходному со­стоянию. Скорость процесса деформации и восста­новления зависит от вязкости пленки и температуры. Электронная пушка 5, генерирующая электронный пучок, заключена в об­щую со сферическим зеркалом стеклянную оболочку, в которой поддержи­вается вакуум. Пучок фокусируется, отклоняется электромагнитной системой и модулируется по мощно­сти аналогично тому, как это происходит в обычных ЭЛТ. Отображение информации осуществля­ется растровым способом по телевизионному стандарту. В некоторых устрой­ствах достигается и более высокая разрешающая способность (до 1000 строк).

Рис. 14. Упрощенная схема расположения элементов светоклапанного устройства

Для поддержания работоспособности описанного устройства не­обходим ряд мер, усложняющих его конструкцию. В частности, требуется поддерживать постоянный хими­ческий состав и темпера­туру пленки, удалять примеси и остаточные заряды, обеспечивать работоспособность катода и т. д.

Описаны также проекционные системы, работающие на пропускание света, в кото­рых модулятором является ЖК панель. Участки панели меняют коэффициент пропуска­ния под воздействием оптических или электрических сигналов.

Лазерные средства отображения на большой экран находятся в настоящее время в стадии эксперимента, однако важные достоин­ства — высокая разрешающая способность, быстродействие, воз­можность цветных изображений, отсутствие необходимости в проме­жуточных носителях — позволяют считать их наиболее перспектив­ными из имеющихся средств коллективного пользования. Использу­емые для этой цели лазеры имеют непре­рывный режим работы со стабильной выходной мощностью. Это обычно криптоновые ионные лазеры, излучающие красный цвет, и аргоновые, излучающие синий или зеленый цвет.

Наиболее развиты методы, при которых изображение создается непосредственно лу­чами лазера, направляемыми на экран. В упрощенном виде схема лазерного устройства отображе­ния приведена на рис. 15. Элек­трооптический модулятор работа­ет на принципе вращения плоско­сти поляризации. На выходе мо­дулятора действует анализатор, пропус­кающий амплитуду коге­рентного излучения, пропорцио­нальную косинусу угла поляриза­ции. Угол поляризации меняется в зависимости от приложенного к модулятору электри­ческого на­пряжения. Управляя поляризацией луча воздействием напряжения на кристалл (вводя фазовое запаздывание на 180°), можно обеспечить его распространение в одном из двух фиксиро­ванных направлениях. В принципе, имея набор аналогичных пе­реключате­лей, через которые последовательно проходит луч, можно дискретно управлять его проек­цией на экран.

Рис. 15. Схема лазерного устройства отображения:

1 – лазер; 2 – электрооптический модулятор; 3 – отклоняющая система (дефлектор); 4 – управление модулятором и дефлектором; 5 – экран

Основные трудности в развитии лазерных устройств отображе­ния в настоящее время заключаются в высокой сложности управля­ющих электрооптических блоков, обеспечении стабильности их ра­боты в обычных условиях. Проблемой является также достижение дос­таточной яркости изображения на большом экране, так как излучение лазеров имеет зна­чительно более низкую световую отда­чу, чем излучение обычных источников.

2. Средства отображения информации


Для современных средств отображения информации характерно значительное раз­нообразие реализованных в них физических прин­ципов. Увеличиваются функциональные возможности универсальных УОИ. С другой стороны, расширение области их примене­ния приводит к созданию разнообразных узко специализированных ус­тройств. Наиболее четко средства отображении могут быть разделены по используемым в индикаторах фи­зическим принципам. Их особенности решающим образом сказываются на конструкции и функциональных возможностях УОИ.

По прочим признакам технические средства отображения могут быть классифици­рованы следующим образом.

По типу представляемой информации УОИ подразделяются на устройства, реали­зующие отображение: дискретных сигналов, цифровых данных, условных графических образов, мнемосхем, алфавитно-цифровой информации, квазиграфической информации, универсальной графической информации.

Отображение дискретных сигналов (но типу «да - нет») имеет место в электротехни­ческих и радиотехнических устройствах. Отображение чисто цифровой информации не­обходимо в различных устройствах вычислительной и измерительной техники. Это наи­более массовые типы индикаторов. Реализация таких индикаторов в настоящее время в основном осуществляется на базе твердотельных элементов люминесцентного, светоди­одного и жидкокристаллического типов.

Для обозначения часто встречающихся явлений и событий иногда используются ус­ловные графические образы. Мнемосхемы используются для отображения сложных структур и в условном виде обозначают объекты и явления с учетом связей между ними. При индивидуальном использовании мнемосхемы реализуются на экранных индикаторах различного типа, при групповом — строятся из набора дискретных элементов.

Отображение алфавитно-цифровой информации охватывает наибольшее число при­менений, в том числе в области АСУ различном назначения. Реализация текстов осущест­вляется в основном на экранах ЭЛТ, а также на различных плоских панелях: газоразряд­ных, люминесцентных и др. Добавление к знаковой информации графических элементов позволяет без изменения технической структуры УОИ обеспечить отображение простей­ших рисунков, относящихся к так называемой информационной графике. Средства ото­бражения такого рода получили название квазиграфических (иногда псевдографических). Наиболее совершенные дисплейные устройства позволяют отображать любую графиче­скую информацию (в том числе и символьную), сложность которой ограничивается лишь разрешающей способностью и емкостью экрана.

По способу формирования изображения УОИ подразделяют на устройства дис­кретно-знаковые, дискретно-матричные, функцио­нальные и растровые.

В первом случае каждый дискретный знак формируется отдельно адресуемым инди­каторным элементом. Возможности таких при­боров определяются набором знаков в каж­дом индикаторе и их нищим количеством. При отображении средних и больших объемов информации такой метод мало эффективен.

При дискретно-матричном способе формирование изображения осуществляется с помощью большого числа точечных элементов, которые собраны в столбцы и строки. Чтобы высветился элемент, расположенный на пересечении определенных строки и столбца, он должен иметь порог включения, который превышается только в месте пересе­чения, на остальные элементы при этом должен поступать сигнал, по амплитуде меньший порогового. Большинство устройств такого типа реализуется в виде плоских панелей на базе электролю­минесценции, газового разряда и некоторых других физических принци­пов.

Следующие два способа формирования изображения относятся главным образом к индикаторам, построенным на базе ЭЛТ. Фун­кциональный (или векторный) метод преду­сматривает построение информационных образов (символьных или графических) путем произвольного отклонения луча. При растровом методе подсвет элементов изображения осуществляется в определенные моменты времени синхронно с постоянной разверткой луча по экрану.

По характеру использования средства отображения разделяют на индивидуальные и коллективные (массовые). Различные экран­ные и матричные средства, предназначенные для использования одним оператором, наиболее распространены в технике отображе­ния. В некоторых крупных пунктах управления и информационных системах используются индикаторные устройства больших размеров, позволяющие осуществлять групповое взаимодействие операторов или выдавать справочную информацию массовому пользова­телю.

По степени программирования УОИ могут быть разделены на устройства с посто­янными (непрограммируемыми) функциями, устройства с программируемыми функциями и параметрами (гибкие устройства) и устройства с возможностью программной обработки данных (активные или интеллектуальные средства отображения). Возможность изменения функций и параметров (например, форматов и алфавита) определяется конструкцией УОИ и его схемой управления, которые при этом достаточно сложны, возможность же обра­ботки данных требует использования в составе УОИ микро-ЭВМ. Усложнение управле­ния целесообразно в дисплеях с широки­ми возможностями по отображению информации, которые обеспечи­вают ЭЛТ или многоэлементные плоские панели.

По характеру связи с пользователем средства отображения разделяют на инфор­мирующие, запросно-справочные и диалоговые. В первом случае имеется в виду односто­ронний характер предо­ставления визуальной информации пользователю от центральной системы или датчиков. Во втором и третьем случаях возможен двусторонний обмен ин­формацией. В запросно-справочных системах оператор передает системе заранее обу­словленные команды, но не может модифицировать или вводить данные. В диалоговых систе­мах такая возможность ему предоставляется. Последний тип связи получил наи­большее развитие при работе УОИ в системах с ЭВМ, а также в персональных ЭВМ.

Перечислим в заключение некоторые основные технические па­раметры, характери­зующие УОИ. К ним могут быть отнесены: размер поля отображения; информационная емкость экрана; быс­тродействие; количество и тип отображаемых элементов (при их фик­сации); наличие и объем автономной памяти; эргономические характеристики (разре­шающая способность, яркость, мелькание, цвет и пр.); габаритные размеры и энергетиче­ские показатели.

В данном разделе основное внимание уделено техническим сред­ствам отображения, получившим в настоящее время широкое рас­пространение в различных автоматизирован­ных системах обработки информации и управления. К ним относятся алфавитно-цифро­вые и графические дисплеи на ЭЛТ, а также некоторые типы матричных приборов.







17.06.2012
Большое обновление Большой Научной Библиотеки  рефераты
12.06.2012
Конкурс в самом разгаре не пропустите Новости  рефераты
08.06.2012
Мы проводим опрос, а также небольшой конкурс  рефераты
05.06.2012
Сена дизайна и структуры сайта научной библиотеки  рефераты
04.06.2012
Переезд на новый хостинг  рефераты
30.05.2012
Работа над улучшением структуры сайта научной библиотеки  рефераты
27.05.2012
Работа над новым дизайном сайта библиотеки  рефераты

рефераты
©2011